Vietnamese News
NZ scientists take step towards quantum computing
Monday, 27 September 2010
In a major physics breakthrough with international significance, University of Otago scientists have developed a technique to consistently isolate and capture a fast-moving neutral atom. The entrapment of the Rubidium 85 atom is the result of a three-year research project and has already prompted world-wide interest in the new science which will flow from the breakthrough.
(via University of Otago) A team of four researchers from Otago’s Physics Department, led by Dr Mikkel F. Andersen, used laser cooling technology to dramatically slow a group of rubidium 85 atoms. A laser-beam, or “optical tweezers”, was then deployed to isolate and hold one atom - at which point it could be photographed through a microscope.
The researchers then proved they could reliably and consistently produce individual trapped atoms – a major step towards using the atoms to build next-generation, ultra-fast quantum-logic computers, which harness the potency of atoms to perform complex information-processing tasks.
Dr Andersen says that unlike conventional silicon-based computers which generally perform one task at a time, quantum computers have the potential to perform numerous long and difficult calculations simultaneously; they also have the potential to break secret codes that would usually prove too complex.
“Our method provides a way to deliver those atoms needed to build this type of computer, and it is now possible to get a set of ten atoms held or trapped at the one time.
“You need a set of 30 atoms if you want to build a quantum computer that is capable of performing certain tasks better than existing computers, so this is a big step towards successfully doing that,” he says.
“It has been the dream of scientists for the past century to see into the quantum world and develop technology on the smallest scale – the atomic scale.
The results of the landmark study have today been announced in the leading scientific journal Nature Physics.
Dr Andersen says that within three weeks of the first laboratory experiment successfully trapping the atom, new experiments previously not thought possible were underway.
Dr Andersen says that for him personally, the breakthrough has been a major milestone.
“I learnt at elementary school that it is impossible to see a single atom through a microscope. Well, my elementary school teacher was wrong,” he says.
The other members of Dr Andersen’s team are Tzahi Grünzweig, Andrew Hilliard and Matt McGovern.